Regression calibration of self-reported mobile phone use to optimize quantitative risk estimation in the COSMOS study

Author:

Reedijk Marije,Portengen Lützen,Auvinen Anssi,Kojo Katja,Heinävaara Sirpa,Feychting Maria,Tettamanti Giorgio,Hillert Lena,Elliott Paul,Toledano Mireille B,Smith Rachel B,Heller Joël,Schüz Joachim,Deltour Isabelle,Poulsen Aslak Harbo,Johansen Christoffer,Verheij Robert,Peeters Petra,Rookus Matti,Traini EugenioORCID,Huss Anke,Kromhout Hans,Vermeulen RoelORCID,

Abstract

AbstractThe Cohort Study of Mobile Phone Use and Health (COSMOS) study has repeatedly collected both self-reported and operator-recorded data on mobile phone use. Assessing health effects using self-reported information only is prone to measurement error, but operator data were available prospectively for only part of the study population and did not cover past mobile phone use. To optimize the available data and reduce bias, we evaluated different statistical approaches for constructing mobile phone exposure histories within COSMOS. We evaluated and compared the performance of complete case-analysis, different regression calibration methods, and multiple imputation in a simulation study with a binary health outcome. We used self-reported and operator-recorded mobile phone call data collected at baseline (2007-2012) from participants in Denmark, Finland, the Netherlands, Sweden, and the UK. Parameter estimates obtained using regression calibration methods were associated with less bias and lower mean squared error than those obtained with complete-case analysis or multiple-imputation. Our simulation study showed that regression calibration methods resulted in more accurate estimation of the relation between mobile phone use and health outcomes, by combining self-reported data with objective operator- recorded data available for a subset of the participants.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3