Self-Configuring Capsule Networks for Brain Image Segmentation

Author:

Avesta ArmanORCID,Hossain Sajid,Aboian Mariam,Krumholz Harlan M.ORCID,Aneja Sanjay

Abstract

AbstractWhen an auto-segmentation model needs to be applied to a new segmentation task, multiple decisions should be made about the pre-processing steps and training hyperparameters. These decisions are cumbersome and require a high level of expertise. To remedy this problem, I developed self-configuring CapsNets (scCapsNets) that can scan the training data as well as the computational resources that are available, and then self-configure most of their design options. In this study, we developed a self-configuring capsule network that can configure its design options with minimal user input. We showed that our self-configuring capsule netwrok can segment brain tumor components, namely edema and enhancing core of brain tumors, with high accuracy. Out model outperforms UNet-based models in the absence of data augmentation, is faster to train, and is computationally more efficient compared to UNet-based models.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3