Developing and validating a pancreatic cancer risk model for the general population using multi-institutional electronic health records from a federated network

Author:

Jia Kai,Kundrot Steven,Palchuk Matvey,Warnick Jeff,Haapala Kathryn,Kaplan Irving,Rinard Martin,Appelbaum Limor

Abstract

AbstractPurposePancreatic Duct Adenocarcinoma (PDAC) screening can enable detection of early-stage disease and long-term survival. Current guidelines are based on inherited predisposition; only about 10% of PDAC cases meet screening eligibility criteria. Electronic Health Record (EHR) risk models for the general population hold out the promise of identifying a high-risk cohort to expand the currently screened population. Using EHR data from a multi-institutional federated network, we developed and validated a PDAC risk prediction model for the general US population.MethodsWe developed Neural Network (NN) and Logistic Regression (LR) models on structured, routinely collected EHR data from 55 US Health Care Organizations (HCOs). Our models used sex, age, frequency of clinical encounters, diagnoses, lab tests, and medications, to predict PDAC risk 6-18 months before diagnosis. Model performance was assessed using Receiver Operating Characteristic (ROC) curves and calibration plots. Models were externally validated using location, race, and temporal validation, with performance assessed using Area Under the Curve (AUC). We further simulated model deployment, evaluating sensitivity, specificity, Positive Predictive Value (PPV) and Standardized Incidence Ratio (SIR). We calculated SIR based on the SEER data of the general population with matched demographics.ResultsThe final dataset included 63,884 PDAC cases and 3,604,863 controls between the ages 40 and 97.4 years. Our best performing NN model obtained an AUC of 0.829 (95% CI: 0.821 to 0.837) on the test set. Calibration plots showed good agreement between predicted and observed risks. Race-based external validation (trained on four races, tested on the fifth) AUCs of NN were 0.836 (95% CI: 0.797 to 0.874), 0.838 (95% CI: 0.821 to 0.855), 0.824 (95% CI: 0.819 to 0.830), 0.842 (95% CI: 0.750 to 0.934), and 0.774 (95% CI: 0.771 to 0.777) for AIAN, Asian, Black, NHPI, and White, respectively. Location-based external validation (trained on three locations, tested on the fourth) AUCs of NN were 0.751 (95% CI: 0.746 to 0.757), 0.749 (95% CI: 0.745 to 0.753), 0.752 (95% CI: 0.748 to 0.756), and 0.722 (95% CI: 0.713 to 0.732) for Midwest, Northeast, South, and West, respectively. Average temporal external validation (trained on data prior to certain dates, tested on data after a date) AUC of NN was 0.784 (95% CI: 0.763 to 0.805). Simulated deployment on the test set, with a mean follow up of 2.00 (SD 0.39) years, demonstrated an SIR range between 2.42-83.5 for NN, depending on the chosen risk threshold. At an SIR of 5.44, which exceeds the current threshold for inclusion into PDAC screening programs, NN sensitivity was 35.5% (specificity 95.6%), which is 3.5 times the sensitivity of those currently being screened with an inherited predisposition to PDAC. At a chosen high-risk threshold with a lower SIR, specificity was about 85%, and both models exhibited sensitivities above 50%.ConclusionsOur models demonstrate good accuracy and generalizability across populations from diverse geographic locations, races, and over time. At comparable risk levels these models can predict up to three times as many PDAC cases as current screening guidelines. These models can therefore be used to identify high-risk individuals, overlooked by current guidelines, who may benefit from PDAC screening or inclusion in an enriched group for further testing such as biomarker testing. Our integration with the federated network provided access to data from a large, geographically and racially diverse patient population as well as a pathway to future clinical deployment.

Publisher

Cold Spring Harbor Laboratory

Reference28 articles.

1. Surveillance, epidemiology, and end results (SEER) program SEER*Stat database: Incidence SEER research limited-field data, 22 registries, nov 2021 sub (2000-2019) linked to county attributes time dependent (1990-2019) income/rurality, 1969-2020 counties (2022), https://www.seer.cancer.gov, Released April 2022, based on the November 2021 submission

2. Agniel, D. , Kohane, I.S. , Weber, G.M. : Biases in electronic health record data due to processes within the healthcare system: retrospective observational study. BMJ 361 (2018)

3. Development and validation of a pancreatic cancer risk model for the general population using electronic health records: An observational study;European Journal of Cancer,2021

4. Aga clinical practice update on pancreas cancer screening in high-risk individuals: expert review;Gastroenterology,2020

5. Do changes in health reveal the possibility of undiagnosed pancreatic cancer? development of a risk-prediction model based on healthcare claims data;PloS one,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3