Unraveling Chamber-specific Differences in Intercalated Disc Ultrastructure and Molecular Organization and Their Impact on Cardiac Conduction

Author:

Struckman Heather L.ORCID,Moise NicolaeORCID,King D. RyanORCID,Soltisz AndrewORCID,Buxton Andrew,Dunlap Izabella,Chen Zhenhui,Radwański Przemysław B.ORCID,Weinberg Seth H.ORCID,Veeraraghavan RengasayeeORCID

Abstract

ABSTRACTDuring each heartbeat, the propagation of action potentials through the heart coordinates the contraction of billions of individual cardiomyocytes and is thus, a critical life process. Unsurprisingly, intercalated discs, which are cell-cell contact sites specialized to provide electrical and mechanical coupling between adjacent cardiomyocytes, have been the focus of much investigation. Slowed or disrupted propagation leads to potentially life-threatening arrhythmias in a wide range of pathologies, where intercalated disc remodeling is a common finding. Hence, the importance and urgency of understanding intercalated disc structure and its influence on action potential propagation. Surprisingly, however, conventional modeling approaches cannot predict changes in propagation elicited by perturbations that alter intercalated disc ultrastructure or molecular organization, owing to lack of quantitative structural data at subcellular through nano scales. In order to address this critical gap in knowledge, we sought to quantify intercalated disc structure at these finer spatial scales in the healthy adult mouse heart and relate them to function in a chamber-specific manner as a precursor to understanding the impacts of pathological intercalated disc remodeling. Using super-resolution light microscopy, electron microscopy, and computational image analysis, we provide here the first ever systematic, multiscale quantification of intercalated disc ultrastructure and molecular organization. By incorporating these data into a rule-based model of cardiac tissue with realistic intercalated disc structure, and comparing model predictions of electrical propagation with experimental measures of conduction velocity, we reveal that atrial intercalated discs can support faster conduction than their ventricular counterparts, which is normally masked by inter-chamber differences in myocyte geometry. Further, we identify key ultrastructural and molecular organization features underpinning the ability of atrial intercalated discs to support faster conduction. These data provide the first stepping stone to elucidating chamber-specific impacts of pathological intercalated disc remodeling, as occurs in many arrhythmic diseases.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3