Development and optimisation of cationic lipid nanoparticles for mRNA delivery

Author:

Yan Dongnan,Lu Haonan,Kaur Apanpreet,Fu Ruisi,Wang Ning,Teh Jin Hui,Lou Hantao,Aboagye Eric O,Chen Rongjun

Abstract

AbstractMessenger RNA (mRNA) has been proposed as a therapeutic agent for various diseases, including cancer. To ensure effective transfection of cancer cells, mRNA needs to be transported with a delivery system that protects its integrity and functionality. In this regard, cationic lipid nanoparticles composed of dioleoylphosphatidylethanolamine (DOPE) and 3β-[N-(N’,N’-dimethylaminoethane)-carbamoyl] cholesterol (DC-Chol) have emerged as common vectors to deliver mRNA. In this project, we aim to use luciferase mRNA as a reporter to synthesise mRNA-loaded cationic lipid nanoparticles, and optimise their mRNA encapsulation and transfection efficiency in ovarian cancer cells. The optimisation process included: 1) adjusting the lipid formulation; 2) adjusting the input mRNA concentration before lipid nanoparticle extrusion; and 3) adjusting the extrusion methods. After optimisation, the encapsulation efficiency was optimised to 62%, thus achieving a relatively high transfection luminescence signal (9.4 times compared to baseline). The lipid nanoparticles also demonstrated stable physical characteristics and high biocompatibility (above 75% cell viability after treatment) within 24 hours. Overall, this project evaluated the synthesis of DOPE/DC-Chol cationic lipid nanoparticles, and optimised their mRNA encapsulation and transfection efficiency in ovarian cancer cell lines. The optimised lipid nanoparticles can be utilised as an ideal system for mRNA delivery, which could be further developed as a potential platform for the immunotherapy in ovarian cancer.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3