Substrate stiffness facilitates improved induced pluripotent stem cell production through modulation of both early and late phases of cell reprogramming

Author:

Chowdhury Mohammad MahfuzORCID,Zimmerman Samuel,Leeson HannahORCID,Nefzger Christian MaximilianORCID,Mar Jessica CaraORCID,Laslett AndrewORCID,Polo Jose MariaORCID,Wolvetang ErnstORCID,Cooper-White Justin JohnORCID

Abstract

AbstractCell reprogramming involves time-intensive, costly processes that ultimately produce low numbers of reprogrammed cells of variable quality. By screening a range of polyacrylamide hydrogels (pAAm gels) of varying stiffness (1 kPA – 1.3 MPa) we found that a gel of medium stiffness significantly increases the overall number of reprogrammed cells by up to ten-fold with accelerated reprogramming kinetics, as compared to the standard Tissue Culture PolyStyrene (TCPS)-based protocol. We observe that though the gel improves both early and late phases of reprogramming, improvement in the late (reprogramming prone population maturation) phase is more pronounced and produces iPSCs having different characteristics and lower remnant transgene expression than those produced on TCPS. Comparative RNA-Seq analyses coupled with experimental validation reveals that modulation of Bone Morphogenic Protein (BMP) signalling by a novel reprogramming regulator, Phactr3, upregulated in the gel at an earliest time-point without the influence of transcription factors used for reprogramming, plays a crucial role in the improvement in the early reprogramming kinetics and overall reprogramming outcomes. This study provides new insights into the mechanism via which substrate stiffness modulates reprogramming kinetics and iPSC quality outcomes, opening new avenues for producing higher numbers of quality iPSCs or other reprogrammed cells at shorter timescales.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3