Digital data storage on DNA tape using CRISPR base editors

Author:

Sadremomtaz Afsaneh,Glass Robert F.,Guerrero Jorge Eduardo,LaJeunesse Dennis R.,Josephs Eric A.,Zadegan Reza

Abstract

AbstractWhile the archival digital memory industry approaches its physical limits, the demand is significantly increasing, therefore alternatives emerge. Recent efforts have demonstrated DNA’s enormous potential as a digital storage medium with superior information durability, capacity, and energy consumption. However, the majority of the proposed systems require on-demandde-novoDNA synthesis techniques that produce a large amount of toxic waste and therefore are not industrially scalable and environmentally friendly. Inspired by the architecture of semiconductor memory devices and recent developments in gene editing, we created a molecular digital data storage system called “DNA Mutational Overwriting Storage” (DMOS) that stores information by leveraging combinatorial, addressable, orthogonal, and independentin vitroCRISPR base-editing reactions to write data on a blank pool of greenly synthesized DNA tapes. As a proof of concept, we wrote both a bitmap representation of our school’s logo and the title of this study on the DNA tapes, and accurately recovered the stored data.

Publisher

Cold Spring Harbor Laboratory

Reference44 articles.

1. Virnov, T. et al. 2018 Semiconductor Synthetic Biology Roadmap. National Institute of Standards and Technolog 36 (2018).

2. Nucleic acid memory

3. Next-Generation Digital Information Storage in DNA

4. Adaptive coding for DNA storage with high storage density and low coverage;npj Systems Biology and Applications,2022

5. DNA stability: a central design consideration for DNA data storage systems;Nature Communications,2021

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Application of gene editing technology to DNA digital data storage;Highlights in Science, Engineering and Technology;2023-11-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3