Individual differences in developmental trajectory leave a male polyphenic signature in bulb mite populations

Author:

Deere Jacques A.ORCID,Smallegange Isabel M.ORCID

Abstract

AbstractDevelopmental plasticity alters phenotypes and can in that way change the response to selection. When alternative phenotypes show different life history trajectories, developmental plasticity can also affect, and be affected by, population size-structure in an eco-evolutionary interaction. Developmental plasticity often functions to anticipate future conditions but it can also mitigate current stress conditions. Both types of developmental plasticity have evolved under different selections and this raises the question if they underlie different eco-evolutionary population dynamics. Here, we tested, in a long-term population experiment using the male polyphenic bulb mite (Rhizoglyphus robini), if the selective harvesting of juveniles of different developmental stages concurrently alters population size (ecological response) and male adult phenotype expression (evolutionary response) in line with eco-evolutionary predictions that assume the male polyphenism is anticipatory or mitigating. We found that the frequency of adult males that expressed costly (fighter) morphology was lowest under the most severe juvenile harvesting conditions. This response cannot be explained if we assume that adult male phenotype expression is to anticipate adult (mating) conditions because, in that case, only the manipulation of adult performance would have an effect. Instead, we suggest that juveniles mitigate their increased mortality risk by expediating ontogeny to forego the development of costly morphology and mature quicker but as a defenceless scrambler. If, like in mammals and birds where early-life stress effects are extensively studied, we account for such pre-adult viability selection in coldblooded species, it would allow us to (i) better characterise natural selection on trait development like male polyphenisms, (ii) understand how it can affect the response to other selections in adulthood, and (iii) understand how such trait dynamics influence, and are influenced by, population dynamics.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3