Reorganization of corticospinal projections after prominent recovery of finger dexterity from partial spinal cord injury in macaque monkeys

Author:

Sawada Masahiro,Yoshino-Saito Kimika,Ninomiya Taihei,Oishi Takao,Yamashita Toshihide,Onoe Hirotaka,Takada Masahiko,Nishimura Yukio,Isa Tadashi

Abstract

ABSTRACTWe investigated morphological changes in the corticospinal tract (CST) to understand the mechanism underlying recovery of hand function after lesion of the CST at the C4/C5 border in 7 macaque monkeys. All monkeys exhibited complete recovery of precision grip success ratio within a few months. The trajectories and terminals of CST from the contralesional (n = 4) and ipsilesional (n = 3) hand area of primary motor cortex (M1) were investigated at 5-29 months after the injury using an anterograde neural tracer, biotinylated dextran amine (BDA). Reorganization of the CST was assessed by counting the number of BDA-labeled axons and button-like swellings in the gray and white matters. Rostral to the lesion (at C3), the number of axon collaterals of the descending axons from both contralesional and ipsilesional M1 entering the ipsilesional and contralesional gray matter, respectively, were increased. Caudal to the lesion (at C8), axons originating from the contralesional M1, descending in the preserved gray matter around the lesion, and terminating in ipsilesional laminae VI/VII and IX were observed. In addition, axons and terminals from the ipsilesional M1 increased in the ipsilesional laminae VI/VII and IX after recrossing the midline, which were not observed in intact monkeys. Conversely, axons originating from the ipsilesional M1 and directed toward the contralesional laminae VI/VII and IX decreased. These results suggest that multiple reorganizations of the corticospinal projections to spinal segments both rostral and caudal to the lesion originating from bilateral M1 underlie a prominent recovery in long-term after spinal cord injury.SIGNIFICANCE STATEMENTPrevious studies have shown that dexterous finger movements recover prominently after lesion of the corticospinal tract (CST) at the mid-cervical segments through rehabilitative training in macaque monkeys. Here, we show reorganization of the CST including sprouting of axons originating from the contralesional and ipsilesional motor cortex in the gray matter both caudal and rostral to the lesion, including a re-direction of the CST to hand motoneurons in the monkeys 5-29 months after the lesion. Thus, multiple mechanisms of reorganization of CST axons underlie the recovery of impaired cortico-motoneuronal pathways for the long-term recovery of finger dexterity.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3