Systematic part transfer by extending a modular toolkit to diverse bacteria

Author:

Keating KevinORCID,Young Eric M.ORCID

Abstract

ABSTRACTIt is impractical to develop a new parts collection for every potential host organism. It is well-established that gene expression parts, like genes, are qualitatively transferable, but there is little quantitative information defining transferability. Here, we systematically quantified the behavior of a parts set across multiple hosts. To do this, we developed a broad host range (BHR) plasmid system compatible with the large, modular CIDAR parts collection forE. coli. This enabled testing of a library of DNA constructs across the Pseudomonadota –Escherichia coli, Pseudomonas putida, Cupriavidus necator, andKomagataeibacter nataicola. Part performance was evaluated with a standardized characterization procedure that quantified expression in terms of molecules of equivalent fluorescein (MEFL), an objective unit of measure. The results showed that the CIDAR parts enable graded gene expression across all organisms – meaning that the same parts can be used to programE. coli, P. putida, C. necator, andK. nataicola. Most parts had a similar expression trend across hosts, although each organism had a different average gene expression level. The variability is enough that to achieve the same MEFL in a different organism, a lookup table is required to translate a design from one host to another. To identify truly divergent parts, we applied linear regression to a combinatorial set of promoters and ribosome binding sites, finding that the promoter J23100 behaves very differently inK. nataicolathan in the other hosts. Thus, it is now possible to evaluate any CIDAR compatible part in three other hosts of interest, and the diversity of these hosts implies that the collection will also be compatible with many other Proteobacteria (Pseudomonadota). Furthermore, this work defines an approach to generalize modular synthetic biology parts sets beyond a single host, making it possible to create a small number of parts sets that can span the tree of life. This will accelerate current efforts to engineer diverse species for environmental, biotechnological, and health applications.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3