Stacking multiple optimal transport policies to map functional connectomes

Author:

Dadashkarimi Javid,Rosenblatt Matthew,Karbasi Amin,Scheinost Dustin

Abstract

AbstractConnectomics is a popular approach for understanding the brain with neuroimaging data. However, a connectome generated from one atlas is different in size, topology, and scale compared to a connectome generated from another. Consequently, connectomes generated from different atlases cannot be used in the same analysis. This limitation hinders efforts toward increasing sample size and demonstrating generalizability across datasets. Recently, we proposed Cross Atlas Remapping via Optimal Transport (CAROT) to find a spatial mapping between a pair of atlases based on a set of training data. The mapping transforms timeseries fMRI data parcellated with an atlas to form a connectome based on a different one. Crucially, CAROT does not need raw fMRI data and thus does not require re-processing, which can otherwise be time-consuming and expensive. The current CAROT implementation leverages information from several source atlases to create robust mappings for a target atlas. In this work, we extend CAROT to combine existing mappings between a source and target atlas for an arbitrary number of mappings. This extension (labeled Stacking CAROT) allows mappings between a pair of atlases to be created once and re-used with other pre-trained mappings to create new mappings as needed. Reconstructed connectomes from Stacking CAROT perform as well as those from CAROT in downstream analyses. Importantly, Stacking CAROT significantly reduces training time and storage requirements compared to CAROT. Overall, Stacking CAROT improves previous versions of CAROT.

Publisher

Cold Spring Harbor Laboratory

Reference26 articles.

1. Altschuler, J. , Weed, J. , Rigollet, P. : Near-linear time approximation algorithms for optimal transport via sinkhorn iteration. arXiv preprint arXiv:1705.09634 (2017)

2. Human brain mapping: A systematic comparison of parcellation methods for the human cerebral cortex

3. Bertsimas, D. , Tsitsiklis, J. : Introduction to linear optimization, athena scientific, 1997. URL: http://athenasc.com/linoptbook.html

4. Tres observaciones sobre el algebra lineal;Univ. Nac. Tucuman, Ser. A,1946

5. Defining functional areas in individual human brains using resting functional connectivity MRI

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3