A closer look at high-energy X-ray-induced bubble formation during soft tissue imaging

Author:

Xian R. PatrickORCID,Brunet JosephORCID,Huang YuzeORCID,Wagner Willi L.ORCID,Lee Peter D.ORCID,Tafforeau PaulORCID,Walsh Claire L.ORCID

Abstract

AbstractImproving the scalability of tissue imaging throughput with bright, coherent X-rays requires identifying and mitigating artifacts resulting from the interactions between X-rays and matter. At synchrotron sources, long-term imaging of soft tissues in solution can result in gas bubble formation or cavitation, which dramatically compromises image quality and integrity of the samples. By combining in-line phase-contrast cineradiography withoperandogas chromatography, we were able to track the onset and evolution of high-energy X-ray-induced gas bubbles in ethanol-embedded soft tissue samples for tens of minutes (2 to 3 times the typical scan times). We demonstrate quantitatively that vacuum degassing of the sample during preparation can significantly delay bubble formation, offering up to a twofold improvement in dose tolerance, depending on the tissue type. However, once nucleated, bubble growth is faster in degassed than undegassed samples, indicating their distinct metastable states at bubble onset. Gas chromatography analysis shows increased solvent vaporization concurrent with bubble formation, yet the quantities of dissolved gases remain unchanged. Coupling features extracted from the radiographs with computational analysis of bubble characteristics, we uncover dose-controlled kinetics and nucleation site-specific growth. These hallmark signatures provide quantitative constraints on the driving mechanisms of bubble formation and growth. Overall, the observations highlight bubble formation as a critical, yet often overlooked hurdle in upscaling X-ray imaging for biological tissues and soft materials and we offer an empirical foundation for their understanding and imaging protocol optimization. More importantly, our approaches establish a top-down scheme to decipher the complex, multiscale radiation-matter interactions in these applications.Significance statementBetter probing the X-ray radiation dose limit of bubble formation in biological tissue and developing mitigation methods is essential for improving imaging techniques involving X-ray, such as synchrotron X-ray tomography or crystallography. Here, we combinedoperandogas chromatography with in-line X-ray phase-contrast radiography on human lung and brain tissue to investigate bubble formation under high-energy X-ray irradiation. We demonstrate that vacuum degassing delays bubble nucleation up to a factor two, depending on the tissue type. Gas chromatography analysis showed increased solvent vaporization during bubble formation; however, the quantities of dissolved gases remained unchanged. Moreover, depending on the nucleation site, bubble growth can be geometrically constrained by sample microstructure, which influence its dynamics.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3