OPTIMAL: An OPTimised Imaging Mass cytometry AnaLysis framework for benchmarking segmentation and data exploration

Author:

Hunter BethanyORCID,Nicorescu IoanaORCID,Foster EmmaORCID,McDonald DavidORCID,Hulme GillianORCID,Fuller Andrew,Thomson AmandaORCID,Goldsborough Thibaut,Hilkens Catharien M.U.ORCID,Majo Joaquim,Milross LukeORCID,Fisher AndrewORCID,Bankhead PeterORCID,Wills JohnORCID,Rees PaulORCID,Filby AndrewORCID,Merces GeorgeORCID

Abstract

AbstractAnalysis of Imaging Mass Cytometry (IMC) data and other low-resolution multiplexed tissue imaging technologies is often confounded by poor single cell segmentation and sub-optimal approaches for data visualisation and exploration. This can lead to inaccurate identification of cell phenotypes, states or spatial relationships compared to reference data from single cell suspension technologies. To this end we have developed the “OPTIMAL” framework to benchmark any approaches for cell segmentation, parameter transformation, batch effect correction, data visualisation/clustering and spatial neighbourhood analysis. Using a panel of 27 metal-tagged antibodies recognising well characterised phenotypic and functional markers to stain the same FFPE human tonsil sample Tissue Microarray (TMA) over 12 temporally distinct batches we tested several cell segmentation models, a range of differentarcsinhcofactor parameter transformation values, five different dimensionality reduction algorithms and two clustering methods. Finally we assessed the optimal approach for performing neighbourhood analysis. We found that single cell segmentation was improved by the use of an Ilastik-derived probability map but that issues with poor segmentation were only really evident after clustering and cell type/state identification and not always evident when using “classical” bi-variate data display techniques. The optimalarcsinhcofactor for parameter transformation was 1 as it maximised the statistical separation between negative and positive signal distributions and a simple Z-score normalisation step afterarcsinhtransformation eliminated batch effects. Of the five different dimensionality reduction approaches tested, PacMap gave the best data structure with FLOWSOM clustering out-performing Phenograph in terms of cell type identification. We also found that neighbourhood analysis was influenced by the method used for finding neighbouring cells with a “disc” pixel expansion outperforming a “bounding box” approach combined with the need for filtering objects based on size and image-edge location. Importantly OPTIMAL can be used to assess and integrate with any existing approach to IMC data analysis and, as it creates .FCS files from the segmentation output, allows for single cell exploration to be conducted using a wide variety of accessible software and algorithms familiar to conventional flow cytometrists.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3