Importance of genetic architecture in marker selection decisions for genomic prediction

Author:

Coletta Rafael DellaORCID,Fernandes Samuel B.,Monnahan Patrick J.,Mikel Mark A.,Bohn Martin O.,Lipka Alexander E.,Hirsch Candice N.ORCID

Abstract

AbstractBreeders commonly use genetic markers to predict the performance of untested individuals as a way to improve the efficiency of breeding programs. These genomic prediction models have almost exclusively used single nucleotide polymorphisms (SNPs) as their source of genetic information, even though other types of markers exist, such as structural variants (SVs). Given that SVs are associated with environmental adaptation and not all of them are in linkage disequilibrium to SNPs, SVs have the potential to bring additional information to multi-environment prediction models that are not captured by SNPs alone. Here, we evaluated different marker types (SNPs and/or SVs) on prediction accuracy across a range of genetic architectures for simulated traits across multiple environments. Our results show that SVs can improve prediction accuracy by up to 19%, but it is highly dependent on the genetic architecture of the trait. Differences in prediction accuracy across marker types were more pronounced for traits with high heritability, high number of QTLs, and SVs as causative variants. In these scenarios, using SV markers resulted in better prediction accuracies than SNP markers, especially when predicting untested genotypes across environments, likely due to more predictors being in linkage disequilibrium with causative variants. The simulations revealed little impact of different effect sizes between SNPs and SVs as causative variants on prediction accuracy. This study demonstrates the importance of knowing the genetic architecture of a trait in deciding what markers and marker types to use in large scale genomic prediction modeling in a breeding program.Key messageWe demonstrate potential for improved multi-environment genomic prediction accuracy using structural variant markers. However, the degree of observed improvement is highly dependent on the genetic architecture of the trait.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3