Unraveling Neuronal Identities Using SIMS: A Deep Learning Label Transfer Tool for Single-Cell RNA Sequencing Analysis

Author:

Gonzalez-Ferrer JesusORCID,Lehrer JulianORCID,O’Farrell AshORCID,Paten BenedictORCID,Teodorescu MirceaORCID,Haussler DavidORCID,Jonsson Vanessa D.ORCID,Mostajo-Radji Mohammed A.ORCID

Abstract

AbstractLarge single-cell RNA datasets have contributed to unprecedented biological insight. Often, these take the form of cell atlases and serve as a reference for automating cell labeling of newly sequenced samples. Yet, classification algorithms have lacked the capacity to accurately annotate cells, particularly in complex datasets. Here we present SIMS (Scalable, Interpretable Ma-chine Learning for Single-Cell), an end-to-end data-efficient machine learning pipeline for discrete classification of single-cell data that can be applied to new datasets with minimal coding. We benchmarked SIMS against common single-cell label transfer tools and demonstrated that it performs as well or better than state of the art algorithms. We then use SIMS to classify cells in one of the most complex tissues: the brain. We show that SIMS classifies cells of the adult cerebral cortex and hippocampus at a remarkably high accuracy. This accuracy is maintained in trans-sample label transfers of the adult hu-man cerebral cortex. We then apply SIMS to classify cells in the developing brain and demonstrate a high level of accuracy at predicting neuronal sub-types, even in periods of fate refinement, shedding light on genetic changes affecting specific cell types across development. Finally, we apply SIMS to single cell datasets of cortical organoids to predict cell identities and unveil genetic variations between cell lines. SIMS identifies cell-line differences and misannotated cell lineages in human cortical organoids derived from different pluripotent stem cell lines. When cell types are obscured by stress signals, label transfer from primary tissue improves the accuracy of cortical organoid annotations, serving as a reliable ground truth. Altogether, we show that SIMS is a versatile and robust tool for cell-type classification from single-cell datasets.

Publisher

Cold Spring Harbor Laboratory

Reference103 articles.

1. A practical guide to single-cell rna-sequencing for biomedical research and clinical appli-cations;Genome medicine,2017

2. A comparison of single-cell trajectory inference methods

3. Single cells make big data: New challenges and opportunities in tran-scriptomics;Current Opinion in Systems Biology,2017

4. Current best practices in single‐cell RNA‐seq analysis: a tutorial

5. A community-based transcriptomics classification and nomenclature of neocortical cell types;Nature neuroscience,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3