RNA polymerase sliding on DNA can couple the transcription of nearby bacterial operons

Author:

Tenenbaum Debora,Inlow Koe,Friedman Larry,Cai Anthony,Gelles JeffORCID,Kondev Jane

Abstract

ABSTRACTDNA transcription initiates after an RNA polymerase (RNAP) molecule binds to the promoter of a gene. In bacteria, the canonical picture is that RNAP comes from the cytoplasmic pool of freely diffusing RNAP molecules. Recent experiments suggest the possible existence of a separate pool of polymerases, competent for initiation, which freely slide on the DNA after having terminated one round of transcription. Promoter-dependent transcription reinitiation from this pool of post-termination RNAP may lead to coupled initiation at nearby operons, but it is unclear whether this can occur over the distance- and time-scales needed for it to function widely on a bacterial genome in vivo. Here, we mathematically model the hypothesized reinitiation mechanism as a diffusion-to-capture process and compute the distances over which significant inter-operon coupling can occur and the time required. These quantities depend on previously uncharacterized molecular association and dissociation rate constants between DNA, RNAP and the transcription initiation factorσ70; we measure these rate constants using single-molecule experiments in vitro. Our combined theory/experimental results demonstrate that efficient coupling can occur at physiologically relevantσ70concentrations and on timescales appropriate for transcript synthesis. Coupling is efficient over terminator-promoter distances up to ∼ 1, 000 bp, which includes the majority of terminator-promoter nearest neighbor pairs in theE. coligenome. The results suggest a generalized mechanism that couples the transcription of nearby operons and breaks the paradigm that each binding of RNAP to DNA can produce at most one messenger RNA.SIGNIFICANCE STATEMENTAfter transcribing an operon, a bacterial RNA polymerase can stay bound to DNA, slide along it, and reini-tiate transcription of the same or a different operon. Quantitative single-molecule biophysics experiments combined with mathematical theory demonstrate that this reinitiation process can be quick and efficient over gene spacings typical of a bacterial genome. Reinitiation may provide a mechanism to orchestrate the transcriptional activities of groups of nearby operons.

Publisher

Cold Spring Harbor Laboratory

Reference51 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3