Optimal evaluation of energy yield and driving force in microbial metabolic pathway variants

Author:

Taha Ahmed,Penas David R,Patón Mauricio,Banga Julio RORCID,Rodríguez JorgeORCID

Abstract

AbstractThis work presents a methodology to evaluate the bioenergetic feasibility of alternative metabolic pathways for a given microbial conversion, optimising their energy yield and driving forces as a function of the concentration of metabolic intermediates. The tool, based on thermodynamic principles and multi-objective optimisation, accounts for pathway variants in terms of different electron carriers, as well as energy conservation (proton translocating) reactions within the pathway. The method also accommodates other constraints, some of them non-linear, such as the balance of conserved moieties. The approach involves the transformation of the maximum energy yield problem into a multi-objective linear optimisation problem which is then subsequently solved using the epsilon-constraint method, highlighting the trade-off between yield and rate in metabolic reactions. The methodology is applied to analyse several pathway alternatives occurring during propionate oxidation in anaerobic fermentation processes, as well as to the reverse TCA cycle pathway occurring during autotrophic microbial CO2fixation. The results obtained using the developed methodology match previously reported literature, and bring about insights into the studied pathways.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3