Data-driven identification of major axes of functional variation in bacteria

Author:

Lajoie GenevièveORCID,Kembel Steven W.ORCID

Abstract

AbstractThe discovery of major axes of correlated functional variation among species and habitats has revealed the fundamental trade-offs structuring both functional and taxonomic diversity in eukaryotes such as plants. Whether such functional axes exist in the bacterial realm and whether they could explain bacterial taxonomic turnover among ecosystems remains unknown. Here we use a data-driven approach to leverage global genomic and metagenomic datasets to reveal the existence of major axes of functional variation explaining both evolutionary differentiation within Bacteria and their ecological sorting across diverse habitats. We show that metagenomic variation among bacterial communities from various ecosystems is structured along a few axes of correlated functional pathways. Similar clusters of traits explained phylogenetic trait variation among >16,000 bacterial genomes, suggesting that functional turnover among bacterial communities from distinct habitats does not only result from the differential filtering of similar functions among communities, but also from phylogenetic correlations among these functions. Concordantly, functional pathways associated with trait clusters that were most important for defining functional turnover among bacterial communities were also those that had the highest phylogenetic signal in the bacterial genomic phylogeny. This study overall underlines the important role of evolutionary history in shaping contemporary distributions of bacteria across ecosystems.Originality-Significance StatementIn this article, we use a trait screening approach based on genomic and metagenomic data to identify the key functional strategies of bacteria across ecosystems but also across the bacterial tree of life. This novel approach allows us to quantify the role of evolutionary processes in structuring microbial ecological differences among ecosystems. By reducing the high-dimensionality of trait variation observed among microorganisms around a small number of fundamental axes of trait covariation, we make a significant step towards generalization of the drivers of biological diversity in microbes but also across study systems. This research provide a major advance in our understanding of the origin and maintenance of bacterial biological diversity, expanding on related findings for plants and animals.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3