A complex three-dimensional microfluidic model that mimics the early stage events in the human atherosclerotic artery

Author:

Maringanti Ranganath,van Dijk Christian G.M.,Meijer Elana M.,Brandt Maarten M.,Krebber Merle M.ORCID,Chrifi Ihsan,Duncker Dirk J.ORCID,Verhaar Marianne C.,Cheng Caroline

Abstract

AbstractBackgroundAtherosclerosis is a complex inflammatory vascular disease characterized by lipid and immune cells accumulation in the vessel wall, leading to lumen narrowing. Although several 3Din vitromicrofluidic systems were previously described, a realistic reconstruction of thein vivohuman atherosclerotic environment requires co-culture of different cell types arranged in atherosclerotic vessel-like structures with exposure to flow and circulating cells, creating challenges for disease modelling.In this study we developed a 3D tubular microfluidic model with quadruple coculture of human aortic smooth muscle cells (hAoSMCs), human umbilical cord vein endothelial cells (HUVECs) and foam cells to re-create a complex human atherosclerotic vesselin vitroto study the effect of flow and circulating immune cells.Methods & ResultsOur new co-culture protocol with BFP-labelled hAoSMCs, GFP-labelled HUVECs and THP-1 macrophages-derived, Dil-labelled Oxidized Low-Density Lipoprotein (Dil-Ox-LDL) foam cells in a fibrinogen-collagen-I based 3D extracellular matrix (ECM) resulted in vessels with an early lesion morphology, showing a layered vessel-like composition with an endothelium and media, with foam cells accumulating in the sub-endothelial space. Perfusion for 24 hours of atherosclerotic and “healthy” vessels (BFP hAoSMCs and GFP HUVECs without foam cells) showed that the layered wall composition remained stable. Perfusion with circulating THP-1 monocytes demonstrated cell extravasation into the atherosclerotic vessel wall and recruitment of THP-1 cells to the foam cell core. QPCR analysis revealed increased expression of atherosclerosis markers in the atherosclerotic vessels and adaptation in VSMCs migration to flow and the plaque microenvironment, compared to control vessels.ConclusionWe present a 3D tubular microfluidic model of a complex early atherosclerotic human vessel that can be exposed to flow and circulating THP-1 monocytes to study hemodynamic changes and immune cell recruitment under live confocal imaging. This novel atherosclerosis-on-a-chip model offers a humanized platform for in-depth mechanisticin vitrostudies and drug testing.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3