Abstract
ABSTRACTThe mechanical properties and forces in the extracellular environment surrounding alveolar epithelial cells have the potential to modulate their behavior. Particularly, breathing applies 3-dimensional cyclic stretches to the cells, while the stiffness of the interstitium changes in disease states, such as fibrosis and cancer. A platform was developed that effectively imitates the active forces in the alveolus, while allowing one to control the interstitium matrix stiffnesses to mimic fibrotic lung tumor microenvironments. Alveolar epithelial cancer cells were cultured on these platforms and changes in the glycocalyx expression were evaluated. A complex combination of stiffness and dynamic forces altered heparan sulfate and chondroitin sulfate proteoglycan expressions. Consequently, we designed liposomal nanoparticles (LNPs) modified with peptides that can target heparan sulphate and chondroitin sulfates of cell surface glycocalyx. Cellular uptake of these modified nanoparticles increased in stiffer conditions depending on the stretch state. Namely, chondroitin sulfate A targeting improved uptake efficiency in cells experiencing dynamic stretches, while cells seeded on static stiff interstitium preferentially took up heparan sulfate targeting LNPs. These results demonstrate the critical role that mechanical stiffness and stretching play in the alveolus and the importance of including these properties in nanotherapeutic design for cancer treatment.
Publisher
Cold Spring Harbor Laboratory