Effects of a field-sprayed antibiotic on bee foraging behavior and pollination in pear orchards

Author:

Avila LauraORCID,McCullough Christopher,Schiffer AnnieORCID,Moreno JoMari,Ganjur Neha,Ofenloch Zachary,DuPont TiannaORCID,Nottingham LouisORCID,Gerardo Nicole M.,Brosi Berry J.ORCID

Abstract

AbstractBroadcast spraying of antibiotics in crops is widely used for controlling bacterial plant pathogens. The effects of antibiotics on non-target (and especially beneficial) organisms in cropping systems, however, are not well studied. Pollinators are of particular concern because in pear and apple crops, antibiotics for controlling fire blight (Erwinia amylovora) are sprayed during bloom, likely exposing pollinators. This is especially relevant as laboratory evidence suggests that antibiotics could have sublethal effects on bee foraging behavior and colony health. But to our knowledge these potential impacts have not been studied in field settings. Here, we compared the effects of two fire blight control methods, a single spray of an antibiotic (oxytetracycline) and a biological antagonist (Aureobasidium pullulans), on honey bee (Apis mellifera) foraging, pollination, and fruit set in pear orchards. Complementing these field assessments, we conducted laboratory experiments to examine the effects of these treatments on locomotion and foraging behavior of the bumble bee species,Bombus vosnesenskii. We found that honey bees visited fewer flowers and foraged longer on each flower in orchards sprayed with antibiotics than with biological product, but there were no differences in pollination and seed set. The pear cultivars we worked in, however, can self-pollinate. In the lab, we found that feeding on high doses of either the antibiotic or the biological antagonist reduced bumble bee foraging behavior relative to controls. The limited impact of antibiotics on pear pollination observed in this study suggest that antibiotics pose a low economic risk to pear growers, especially for self-compatible cultivars. Still, crops with higher pollinator dependence may be more affected by reductions in pollinator visitation. Future studies should examine the impacts of multiple antibiotic sprays within a season, which are common during warm springs, and their long-term health impacts on both individual bees and colonies.HighlightsAntibiotics are sprayed on many crops to control plant bacterial pathogens.The impacts of antibiotics on beneficial organisms in agriculture are unknown.We studied antibiotic impacts on bee behavior and pollination function in pears.Bees exposed to antibiotics visit fewer flowers and this could impact bee fitness.Despite decreased bee visitation, we did not detect a reduction in crop pollination.Graphical Abstract

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3