Genetically Defined Subtypes of Somatostatin-Containing Cortical Interneurons

Author:

Hostetler Rachel E.,Hu Hang,Agmon Ariel

Abstract

ABSTRACTInhibitory interneurons play a crucial role in proper development and function of the mammalian cerebral cortex. Of the different inhibitory subclasses, dendritic-targeting, somatostatin-containing (SOM) interneurons may be the most diverse. Earlier studies used transgenic mouse lines to identify and characterize subtypes of SOM interneurons by morphological, electrophysiological and neurochemical properties. More recently, large-scale studies classified SOM interneurons into 13 morpho-electro-transcriptomic (MET) types. It remains unclear, however, how these various classification schemes relate to each other, and experimental access to MET types has been limited by the scarcity of type-specific mouse driver lines. To begin to address these issues we crossed Flp and Cre driver mouse lines and a dual-color combinatorial reporter, allowing experimental access to genetically defined SOM subsets. Brains from adult mice of both sexes were retrogradely dye-labeled from the pial surface to identify layer 1-projecting neurons, and immunostained against several marker proteins, allowing correlation of genetic label, axonal target and marker protein expression in the same neurons. Using whole-cell recordings ex-vivo, we compared electrophysiological properties between intersectional and transgenic SOM subsets. We identified two layer 1-targeting intersectional subsets with non-overlapping marker protein expression and electrophysiological properties which, together with a previously characterized layer 4-targeting subtype, account for about half of all layer 5 SOM cells and >40% of all SOM cells, and appear to map onto 5 of the 13 MET types. Genetic access to these subtypes will allow researchers to determine their synaptic inputs and outputs and uncover their roles in cortical computations and animal behavior.SIGNIFICANCE STATEMENTInhibitory neurons are critically important for proper development and function of the cerebral cortex. Although a minority population, they are highly diverse, which poses a major challenge to investigating their contributions to cortical computations and animal and human behavior. As a step towards understanding this diversity we crossed genetically modified mouse lines to allow detailed examination of genetically-defined groups of the most diverse inhibitory subtype, somatostatin-containing interneurons. We identified and characterized three somatostatin subtypes in the deep cortical layers with distinct combinations of anatomical, neurochemical and electrophysiological properties. Future studies could now use these genetic tools to examine how these different subtypes are integrated into the cortical circuit and what roles they play during sensory, cognitive or motor behavior.

Publisher

Cold Spring Harbor Laboratory

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3