Single molecule DNA methylation and hydroxymethylation reveal unique epigenetic identity profiles of T helper cells

Author:

Goldsmith Chloe,Fesneau Olivier,Thevin Valentin,Matias Maria I.,Perrault Julie,Abid Ali Hani,Taylor Naomi,Dardalhon Valérie,Marie Julien C.,Hernandez-Vargas HectorORCID

Abstract

AbstractBoth identity and plasticity of CD4 T helper (Th) cells are regulated in part by epigenetic mechanisms. However, a method that reliably and readily profiles DNA base modifications is still needed to finely study Th cell differentiation. Cytosine methylation (5mC) and cytosine hydroxymethylation (5hmC) are DNA modifications that identify stable cell phenotypes but their potential to characterize intermediate cell transitions has not yet been evaluated. To assess transition states in Th cells, we developed a new method to profile Th cell identity using cas9-targeted single molecule nanopore sequencing and found that 5mC and 5hmC can be used as markers of cellular identity. Targeting as few as 10 selected genomic loci, we were able to distinguish major differentiated T cell subtypes as well as intermediate phenotypes by their native DNA 5mC/5hmC patterns. Moreover, by using off-target sequences we were able to infer transcription factor activities relevant to each cell subtype. Our analysis demonstrates the importance of epigenetic regulation by 5mC and 5hmC modifications in the establishment of Th cell identity. Furthermore, our data highlight the potential to exploit this immune profiling application to elucidate the pathogenic role of Th transition states in autoimmune diseases.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3