Towards Quantitative Imaging Biomarkers of Tumor Dissemination: a Multi-scale Parametric Modeling of Multiple Myeloma

Author:

Piraud Marie,Wennmann Markus,Kintzelé Laurent,Hillengass Jens,Keller Ulrich,Langs Georg,Weber Marc-André,Menze Björn H.

Abstract

AbstractThe advent of medical imaging and automatic image analysis is bringing the full quantitative assessment of lesions and tumor burden at every clinical examination within reach. This opens avenues for the development and testing of functional disease models, as well as their use in the clinical practice for personalized medicine. In this paper, we introduce a Bayesian statistical framework, based on mixed-effects models, to quantitatively test and learn functional disease models at different scales, on population longitudinal data. We also derive an effective mathematical model for the crossover between initially detected lesions and tumor dissemination, based on the Iwata-Kawasaki-Shigesada model. We finally propose to leverage this descriptive disease progression model into model-aware biomarkers for personalized risk-assessment, taking all available examinations and relevant covariates into account. As a use case, we study Multiple Myeloma, a disseminated plasma cell cancer, in which proper diagnostics is essential, to differentiate frequent precursor state without end-organ damage from the rapidly developing disease requiring therapy. After learning the best biological models for local lesion growth and global tumor burden evolution on clinical data, and computing corresponding population priors, we use individual model parameters as biomarkers, and can study them systematically for correlation with external covariates, such as sex or location of the lesion. On our cohort of 63 patients with smoldering Multiple Myeloma, we show that they perform substantially better than other radiological criteria, to predict progression into symptomatic Multiple Myeloma. Our study paves the way for modeling disease progression patterns for Multiple Myeloma, but also for other metastatic and disseminated tumor growth processes, and for analyzing large longitudinal image data sets acquired in oncological imaging. It shows the unprecedented potential of model-based biomarkers for better and more personalized treatment decisions and deserves being validated on larger cohorts to establish its role in clinical decision making.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3