Phosphoproteomics of CD2 signaling reveals an AMPK-dependent regulation of lytic granule polarization in cytotoxic T cells

Author:

Zurli Vanessa,Montecchi Tommaso,Heilig Raphael,Poschke Isabel,Volkmar Michael,Wimmer Giuliana,Boncompagni Gioia,Turacchio Gabriele,D’Elios Mario Milco,Campoccia Giuseppe,Resta Nicoletta,Offringa Rienk,Fischer Roman,Acuto Oreste,Baldari Cosima Tatiana,Kabanova AnnaORCID

Abstract

SummaryThe in-depth analysis of costimulatory signaling enhancing the activity of cytotoxic T cells (CTLs) represents a major approach towards immunotherapy development. Here we report that CD2 costimulation plays a critical role in killing by freshly isolated human CTLs, which represent a challenging but valuable study model to gain insight into CTL biology. We show that CD2 triggering critically aids signaling by the T cell receptor in the formation of functional immune synapses by promoting the polarization of lytic granules towards the microtubule-organizing center (MTOC). To gain insight into the underlying elusive mechanism, we explored the CD2 signaling network by phosphoproteomics, which revealed 616 CD2-regulated phosphorylation events in 373 proteins implicated in the regulation of vesicular trafficking, cytoskeleton organization, autophagy and metabolism. Strikingly, signaling by the master metabolic regulator AMP-activated protein kinase (AMPK) represents a functionally critical node of the CD2 network which regulates granule polarization towards the MTOC in CTLs. Granule trafficking is driven by active AMPK enriched on adjacent lysosomes, illustrating a novel signaling cross-talk between vesicular compartments in CTLs. Our results thus establish CD2 signaling as key for regulating cytotoxic killing and granule polarization in freshly isolated CTLs and strengthens the rationale to choose CD2 and AMPK as therapeutic targets to boost CTL activity.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3