Machine Learning based histology phenotyping to investigate epidemiologic and genetic basis of adipocyte morphology and cardiometabolic traits

Author:

Glastonbury C. AORCID,Pulit S. L,Honecker J.,Censin J. C,Laber S.,Yaghootkar H.,Rahmioglu N.,Pastel E.,Kos K.,Pitt A.,Hudson M.,Nellåker C.,Beer N. L,Hauner H.,Becker C. M,Zondervan K. T,Frayling T. M,Claussnitzer M.,Lindgren C. M

Abstract

AbstractGenetic studies have recently highlighted the importance of fat distribution, as well as overall adiposity, in the pathogenesis of obesity-associated diseases. Using a large study (n = 1,288) from 4 independent cohorts, we aimed to investigate the relationship between adipocyte area and obesity-related traits, and identify genetic factors associated with adipocyte cell size. To perform the first large-scale study of automatic adipocyte phenotyping using both histological and genetic data, we developed a deep learning-based method, the Adipocyte U-Net, to rapidly derive area estimates from histology images. We validate our method using three state-of-the-art approaches; CellProfiler, Adiposoft and floating adipocytes fractions, all run blindly on two external cohorts. We observe high concordance between our method and the state-of-the-art approaches (Adipocyte U-net vs. CellProfiler: R2visceral= 0.94, P < 2.2 × 10−16, R2subcutaneous= 0.91, P < 2.2 × 10−16), and faster run times (10,000 images: 6mins vs 3.5hrs). We applied the Adipocyte U-Net to 4 cohorts with histology, genetic, and phenotypic data (total N = 820). After meta-analysis, we found that adipocyte area positively correlated with body mass index (BMI) (Psubq = 8.13 × 10−69, βsubq = 0.45; Pvisc= 2.5 × 10−55, βvisc= 0.49; average R2 across cohorts = 0.49) and that adipocytes in subcutaneous depots are larger than their visceral counterparts (Pmeta= 9.8 × 10−7). Lastly, we performed the largest GWAS and subsequent meta-analysis of adipocyte area and intra-individual adipocyte variation (N = 820). Despite having twice the number of samples than any similar study, we found no genome-wide significant associations, suggesting that larger sample sizes and a homogenous collection of adipose tissue are likely needed to identify robust genetic associations.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3