Abstract
AbstractIn a recent past, Transposable Elements (TEs) were referred as selfish genetic components only capable of copying themselves with the aim to increase the odds that will be inherited. Nonetheless, TEs have been initially proposed as positive control elements acting in synergy with the host. Nowadays, it is well known that TE movement into genome host comprise an important evolutionary mechanism capable to produce diverse chromosome rearrangements and thus increase the adaptive fitness. According to as insights into TE functioning are increasing day to day, the manipulation of transposition has raised an interesting possibility to setting the host functions, although the lack of appropriate genome engineering tools has unpaved it. Fortunately, the emergence of genome editing technologies based on programmable nucleases, and especially the arrival of a multipurpose RNA-guided Cas9 endonuclease system, has made it possible to reconsider this challenge. For such purpose, a particular type of transposons referred as Miniature Inverted-repeat Transposable Elements (MITEs) has shown a series of interesting characteristics for designing functional drivers. Here, recent insights into MITE elements and versatile RNA-guided CRISPR/Cas9 genome engineering system are given to outline an effective strategy that allows to deploy the TE potential for control of the host transcriptional activity.
Publisher
Cold Spring Harbor Laboratory