Development of plant regeneration and Agrobacterium tumefaciens-mediated transformation methodology for Physalis pruinosa

Author:

Swartwood Kerry,Eck Joyce VanORCID

Abstract

AbstractPhysalis pruinosa, also known as groundcherry, produces a small, yellow, highly nutritious edible fruit that is enveloped by a papery husk. In order for the potential of large-scale production of P. pruinosa fruit to be realized, undesirable characteristics, such as an unmanageable, sprawling growth habit and extensive fruit drop, need to be improved by exploiting approaches available through plant breeding, genetic engineering, and gene editing. In this study, we established plant regeneration and Agrobacterium tumefaciens-mediated methods to allow application of genetic engineering and gene editing of P. pruinosa. Cotyledon and hypocotyl explants from 7 – 8-day-old in vitro-grown seedlings were assessed for plant regeneration. Explants were cultured for 2 weeks on a Murashige and Skoog salts-based medium that contained 2 mg/L zeatin followed by transfer to medium containing 1 mg/L zeatin. Only hypocotyl explants regenerated shoots. Hypocotyl explants were infected with Agrobacterium tumefaciens strain AGL1 containing the pJL33 binary vector that has the green fluorescent protein (GFP) reporter and neomycin phosphotransferase II (nptII) selectable marker genes. After cocultivation, explants were cultured on selective plant regeneration medium that contained 50, 100, 200, 250, and 300 mg/L kanamycin to determine the most effective level for efficient recovery of transgenic lines. Based on rooting of regenerated shoots on selective medium, GFP visualization, and PCR analysis for the presence of the nptII gene, medium containing 200 mg/L kanamycin resulted in the highest transformation efficiency at 24%. This study sets the foundation for future genetic engineering and gene editing approaches for improvement of P. pruinosa.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3