Non-invasive neuromodulation using rTMS and the Electromagnetic-Perceptive Gene (EPG) facilitates plasticity after nerve injury

Author:

Cywiak CarolinaORCID,Ashbaugh Ryan C.,Metto Abigael C.,Udpa Lalita,Qian Chunqi,Gilad Assaf A.,Zhong Ming,Pelled Galit

Abstract

AbstractPeripheral nerve injury leads to altered cortical excitation-inhibition balance which is associated with sensory dysfunctions. We tested if non-invasive repetitive transcranial magnetic stimulation (rTMS) which has shown to induce neuronal excitability, and cell-specific magnetic activation via the Electromagnetic-perceptive gene (EPG) which is a novel gene that was identified and cloned from Kryptopterrus bicirrhis and demonstrated to evoke neural responses when magnetically stimulated, can restore cortical excitability. A battery of behavioral tests, fMRI and immunochemistry were performed in the weeks following limb denervation in rats. The results demonstrate that neuromodulation significantly improved long-term mobility, decreased anxiety and enhanced neuroplasticity. The study also identifies the acute post-injury phase as a critical time for intervention. Moreover, the results implicate EPG as an effective cell-specific neuromodulation approach. Together, these results reinforce the growing amount of evidence from human and animal studies that are establishing neuromodulation as an effective strategy to promote plasticity and rehabilitation.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3