Abstract
AbstractPeripheral nerve injury leads to altered cortical excitation-inhibition balance which is associated with sensory dysfunctions. We tested if non-invasive repetitive transcranial magnetic stimulation (rTMS) which has shown to induce neuronal excitability, and cell-specific magnetic activation via the Electromagnetic-perceptive gene (EPG) which is a novel gene that was identified and cloned from Kryptopterrus bicirrhis and demonstrated to evoke neural responses when magnetically stimulated, can restore cortical excitability. A battery of behavioral tests, fMRI and immunochemistry were performed in the weeks following limb denervation in rats. The results demonstrate that neuromodulation significantly improved long-term mobility, decreased anxiety and enhanced neuroplasticity. The study also identifies the acute post-injury phase as a critical time for intervention. Moreover, the results implicate EPG as an effective cell-specific neuromodulation approach. Together, these results reinforce the growing amount of evidence from human and animal studies that are establishing neuromodulation as an effective strategy to promote plasticity and rehabilitation.
Publisher
Cold Spring Harbor Laboratory
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献