Abstract
The heat shock protein 90 (Hsp90) chaperone functions as a protein-folding buffer and plays a unique role promoting the evolution of new heritable traits. To investigate the role of Hsp90 in modulating protein synthesis, we screened more than 1200 proteins involved in mRNA regulation for physical interactions with Hsp90 in human cells. Among the top hits was CPEB2, which strongly binds Hsp90 via its prion domain, reminiscent of the prion-like regulation of translation of Aplysia CPEB. In a yeast model of CPEB prion-dependent translation regulation, transient inhibition of Hsp90 amplified CPEB2 prion activity and resulted in persistent translation of the CPEB reporter. Remarkably, inhibition of Hsp90 was sufficient to induce a heritable change in protein translation that persisted for 30 generations, even in the absence of exogenous CPEB. Although we identified a variety of perturbations that enhanced translation of the reporter, only Hsp90 inhibition led to persistent activation. Thus, transient loss of Hsp90 function leads to the non-genetic inheritance of a novel translational state. We propose that, in addition to sculpting the conformational landscape of the proteome, Hsp90 promotes phenotypic variation by modulating protein synthesis.
Publisher
Cold Spring Harbor Laboratory