Insular cortex sub-region-dependent distribution pattern of α-synuclein immunoreactivity in Parkinson’s disease and dementia with Lewy bodies

Author:

Fathy Yasmine Y.ORCID,de Jong Frank Jan,van Dam Anne-MarieORCID,Rozemuller Annemieke J.M.ORCID,van de Berg Wilma D.J.

Abstract

AbstractThe insular cortex is a heterogeneous and widely connected brain region. It plays a role in autonomic, cognitive, emotional and somatosensory functions. Its complex and unique cytoarchitecture includes a periallocortical agranular, pro-isocortical dysgranular, and isocortical granular sub-regions. In Parkinson’s disease (PD), the insula shows α-synuclein inclusions in advanced stages of the disease and its atrophy correlates with cognitive deficits. However, little is known regarding its regional neuropathological characteristics and vulnerability in Lewy body diseases. The aim of this study is to assess the distribution pattern of α-synuclein pathology in the insular sub-regions and the selective vulnerability of its different cell types in PD and dementia with Lewy bodies (DLB). Human post-mortem insular tissues from 10 donors with incidental Lewy body disease (iLBD), PD, DLB, and age-matched controls were immunostained for α-synuclein and glial fibrillary acid protein (GFAP). Results showed that a decreasing gradient of α-synuclein pathology was present from agranular to granular sub-regions in iLBD, PD and PD with dementia (PDD) donors. The agranular insula was heavily inflicted, revealing various α-synuclein immunoreactive morphological structures, predominantly Lewy neurites (LNs), and astroglial synucleinopathy. While dysgranular and granular sub-regions showed a decreasing gradient of inclusions and more Lewy bodies (LBs) in deeper layers. In DLB, this gradient was less pronounced and severe pathology was observed in the granular insula compared to PDD and regardless of disease stage. Protoplasmic astrocytes showed α-synuclein inclusions and severe degenerative changes increasing with disease severity. While few von Economo neurons (VENs) in the fronto-insular region revealed inclusions, particularly in PDD patients. Our study reports novel findings on the differential involvement of the insular sub-regions in PD and particular involvement of the agranular sub-region, VENs and astrocytes. Thus, the differential cellular architecture of the insular sub-regions portrays the topographic variation and vulnerability to α-synuclein pathology in Lewy body diseases.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3