Abstract
AbstractThe regulation of translation initiation factor 2 (eIF2) is important for erythroid survival and differentiation. Lack of iron, a critical component of heme and hemoglobin, activates Heme Regulated Inhibitor (HRI). This results in phosphorylation of eIF2 and reduced eIF2 availability, which inhibits protein synthesis. Translation of specific transcripts such as Atf4, however, is enhanced. Upstream open reading frames (uORFs) are key to this regulation. The aim of this study is to investigate how eIF2 phosphorylation affects mRNA translation in erythroblasts. Ribosome profiling combined with RNA sequencing was used to determine translation initiation sites and ribosome density on individual transcripts. Treatment of erythroblasts with Tunicamycin (Tm) increased phosphorylation of eIF2 2-fold. At a false discovery rate of 1%, ribosome density was increased for 147 transcripts, among which transcriptional regulators such as Atf4, Tis7/Ifrd1, Pnrc2, Gtf2h, Mbd3, JunB and Kmt2e. Translation of 337 transcripts decreased more than average, among which Dym and Csde1. Ribosome profiling following Harringtonine treatment uncovered novel translation initiation sites and uORFs. Surprisingly, translated uORFs did not predict eIF2-dependent translation efficiency, but uORF identity differs. The regulation of transcription and translation factors in reponse to eIF2 phosphorylation may explain the large overall response to iron deficiency in erythroblasts.- eif2 dependent translation in erythroblasts during proteotoxic stress determined by ribosome footprinting- identification of transcription factors upregulated in response to eIF2 phosphorylation- Advantages and disadvantages of translation initiation site determination using harringtonine- distinct uORF pattern in transcripts with enhanced, or more than average reduced translation upon proteotoxic stress
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献