Fundamental bounds on learning performance in neural circuits

Author:

Raman Dhruva V.,O’Leary TimothyORCID

Abstract

AbstractHow does the size of a neural circuit influence its learning performance? Intuitively, we expect the learning capacity of a neural circuit to grow with the number of neurons and synapses. Larger brains tend to be found in species with higher cognitive function and learning ability. Similarly, adding connections and units to artificial neural networks can allow them to solve more complex tasks. However, we show that in a biologically relevant setting where synapses introduce an unavoidable amount of noise, there is an optimal size of network for a given task. Beneath this optimal size, our analysis shows how adding apparently redundant neurons and connections can make tasks more learnable. Therefore large neural circuits can either devote connectivity to generating complex behaviors, or exploit this connectivity to achieve faster and more precise learning of simpler behaviors. Above the optimal network size, the addition of neurons and synaptic connections starts to impede learning performance. This suggests that overall brain size may be constrained by the need to learn efficiently with unreliable synapses, and may explain why some neurological learning deficits are associated with hyperconnectivity. Our analysis is independent of specific learning rules and uncovers fundamental relationships between learning rate, task performance, network size and intrinsic noise in neural circuits.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3