Sequence analysis allows functional annotation of tyrosine recombinases in prokaryotic genomes

Author:

Smyshlyaev GeorgyORCID,Barabas Orsolya,Bateman Alex

Abstract

ABSTRACTBackgroundTyrosine recombinases perform site-specific genetic recombination in bacteria and archaea. They safeguard genome integrity by resolving chromosome multimers, as well as mobilize transposons, phages and integrons, driving dissemination of genetic traits and antibiotic resistance. Despite their abundance and genetic impact, tyrosine recombinase diversity and evolution has not been thoroughly characterized, which greatly hampers their functional classification.ResultsHere, we conducted a comprehensive search and comparative analysis of diverse tyrosine recombinases from bacterial, archaeal and phage genomes. We characterized their major phylogenetic groups and show that recombinases of integrons and insertion sequences are closely related to the chromosomal Xer proteins, while integrases of integrative and conjugative elements (ICEs) and phages are more distant. We find that proteins in distinct phylogenetic groups share specific structural features and have characteristic taxonomic distribution. We further trace tyrosine recombinase evolution and propose that phage and ICE integrases originated by acquisition of an N-terminal arm-binding domain. Based on this phylogeny, we classify numerous known ICEs and predict new ones.ConclusionsThis work provides a new resource for comparative analysis and functional annotation of tyrosine recombinases. We reconstitute protein evolution and show that adaptation for a role in gene transfer involved acquisition of a specific protein domain, which allows precise regulation of excision and integration.

Publisher

Cold Spring Harbor Laboratory

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3