Duffy Antigen Expression in Erythroid Bone Marrow Precursor Cells of Genotypically Duffy Negative Individuals

Author:

Dechavanne CéliaORCID,Dechavanne Sebastien,Metral SylvainORCID,Roeper Brooke,Krishnan Sushma,Fong Rich,Bennett Seth,Carias Lenore,Chen Edwin,Salinas Nichole D.ORCID,Ghosh Anil,Tolia Niraj H.ORCID,Woost Philip G.,Jacobberger James W.ORCID,Colin YvesORCID,Gamain BenoitORCID,King Christopher L.,Zimmerman Peter A.ORCID

Abstract

AbstractThe gene encoding the Duffy blood group protein (Fy, CD234; additional designations Duffy Antigen Receptor of Chemokines [DARC] and Atypical Chemokine Receptor 1 [ACKR1]) is characterized by a SNP in a GATA-1 transcription factor binding site associated with the erythrocyte silent (ES) phenotype.FYEShomozygous people are viewed to be highly resistant to blood stage infection withPlasmodium vivax. Increasingly, however, studies are reportingP. vivaxinfections in Fy-negative individuals across malarious African countries whereFYESapproaches genetic fixation. This suggests thatP. vivaxhas evolved a Fy-independent RBC invasion pathway, or that the GATA-1 SNP does not abolish Fy expression. Here, we tested the second hypothesis through binding studies to erythroid lineage cells using recombinantP. vivaxDuffy binding protein, the parasite’s invasion ligand and Fy6-specific antibodies. We first observed variable Fy expression on circulating RBCs, irrespective ofFYgenotype;FYESRBCs were periodically Fy-positive. Furthermore, during thein vitroerythroid differentiation of CD34+ cells and onex vivobone marrow samples, we observed Fy expression on erythroid precursor cells fromFYESpeople. Finally, the Fy6-specific nanobody, CA111 was used to capture Fy from the surface ofFYESRBCs. Our findings reveal that the GATA-1 SNP does not fully abolish Fy expression and provide insight on potential susceptibility of Fy-negative people to vivax malaria.SignificanceDuffy blood group negativity results from a single nucleotide polymorphism (SNP) in the gene promoter, and reaches genetic fixation in many African ethnicities. Because the Duffy protein (Fy) is an important contact point duringPlasmodium vivaxhuman red blood cell invasion, Fy-negativity is considered to confer resistance toP. vivaxmalaria. With recent studies in African countries reportingP. vivaxinfection in Fy-negative people, we studied Fy expression across erythroid development. Here we report that theFYpromoter SNP does not abolish Fy protein expression in erythroid progenitors developing in the bone marrow. These results further emphasizes the importance of reticulocytes as targets forP. vivaxblood stage infection and propose a mechanism forP. vivaxinfections in Fy-negative people.

Publisher

Cold Spring Harbor Laboratory

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3