Differential strengths of molecular determinants guide environment specific mutational fates

Author:

Dandage RohanORCID,Pandey Rajesh,Jayaraj Gopal,Chakraborty Kausik

Abstract

AbstractUnder the influence of selection pressures imposed by natural environments, organisms maintain competitive fitness through underlying molecular evolution of individual genes across the genome. For molecular evolution, how multiple interdependent molecular constraints play a role in determination of fitness under different environmental conditions is largely unknown. Here, using Deep Mutational Scanning (DMS), we quantitated empirical fitness of ∼2000 single site mutants of Gentamicin-resistant gene (GmR). This enabled a systematic investigation of effects of different physical and chemical environments on the fitness landscape of the gene. Molecular constraints of the fitness landscapes seem to bear differential strengths in an environment dependent manner. Among them, conformity of the identified directionalities of the environmental selection pressures with known effects of the environments on protein folding proves that along with substrate binding, protein stability is the common strong constraint of the fitness landscape. Our study thus provides mechanistic insights into the molecular constraints that allow accessibility of mutational fates in environment dependent manner.Author SummaryEnvironmental conditions play a central role in both organismal adaptations and underlying molecular evolution. Understanding of environmental effects on evolution of genotype is still lacking a depth of mechanistic insights needed to assist much needed ability to forecast mutational fates. Here, we address this issue by culminating high throughput mutational scanning using deep sequencing. This approach allowed comprehensive mechanistic investigation of environmental effects on molecular evolution. We monitored effects of various physical and chemical environments onto single site mutants of model antibiotic resistant gene. Alongside, to get mechanistic understanding, we identified multiple molecular constraints which contribute to various degrees in determining the resulting survivabilities of mutants. Across all tested environments, we find that along with substrate binding, protein stability stands out as the common strong constraints. Remarkable direct dependence of the environmental fitness effects on the type of environmental alteration of protein folding further proves that protein stability is the major constraint of the gene. So, our findings reveal that under the influence of environmental conditions, mutational fates are channeled by various degrees of strengths of underlying molecular constraints.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3