Molecular Process Diagram: a precise, scalable and compact visualization of rule-based models

Author:

Vasilescu Dan,Greene James,Schaff James C.ORCID,Moraru Ion IORCID,Blinov Michael L.ORCID

Abstract

AbstractRule-based modeling allows representation and simulation of biological systems where molecular features (such as protein domains) and feature-specific details of molecular interactions are accounted for. The rule-based description is precise and can define very fine molecular details (e.g. how phosphorylation status of a single residue in a multi-protein complex can affect affinity of another binding site of another protein within the same complex), but makes it difficult to effectively combine the assumptions scribed within the multiple rules of a model into a diagrammatic view. Various visualization schemas have been suggested, but they are all highly rule-based centric (e.g. a visual list of unconnected rules, extended contact maps, or atom-rule graphs). None of them match the clarity of traditional reaction/pathway diagrams, where a researcher can easily visually track the transitions and modifications of chemical species occurring in the biological systems being modeled. Here we present a novel approach and software for precise, scalable and compact representation of rule-based models that we call Molecular Process Diagram. It is based on the three basic elements: interacting molecular complexes, molecular sites directly modified by a rule, and molecular sites that are not modified but contribute to a rule mechanism (e.g. a site that in a phosphorylated state changes binding affinity of another site). Multiple levels of resolution are available: pathway-like diagram of interactions among molecules, optional site-specific interactions, and additional contingencies for interactions. Inclusion of molecular sites enables unambiguous reconstruction of the rule descriptions from the visual diagram without additional supporting documentation, while still keeping a pathway-like visual appearance. The proposed approach for visualization has been implemented in the Virtual Cell (VCell) modeling and simulation framework. Our Molecular Process Diagrams extend the notion of Systems Biology Graphical Notation (SBGN) process diagrams and use SBGN-compliant conventions.SummaryKinetic models have provided significant insights into biological regulatory mechanisms even though they typically did not take into consideration the details of protein subcomponents such as binding domains and phosphorylation sites. However, these details are often required for an accurate understanding of the events that occur during cell signaling. Without such detailed understanding, intervention strategies to act on signaling pathways in pathological conditions are bound to have limited success. This need to include site-specific details into models led to the advance of rule-based modeling. While rules describe the details of interactions with unmatched precision, they often obscure the “big picture”, i.e. a pathway-like description of the information flow through the biological system. An intuitive visual diagram is crucial for understanding the assumptions embodied into a model. Here we present a novel approach and software for precise, scalable and compact representation of rule-based models that we call Molecular Process Diagram. It allows visualizing in a pathway-like diagram of the interacting molecules, the molecular sites modified, and the molecular sites that affect the interactions. The approach is implemented in the Virtual Cell (VCell) modeling and simulation framework and suggested as an extension for the Systems Biology Graphical Notations (SBGN) standard.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3