The Drosophila metallopeptidase superdeath decouples apoptosis from the activation of the ER stress response

Author:

Palu Rebecca A.S.,Chow Clement Y.

Abstract

ABSTRACTEndoplasmic reticulum (ER) stress-induced apoptosis is a primary cause and modifier of degeneration in a number of genetic disorders. Understanding how genetic variation between individuals influences the ER stress response and subsequent activation of apoptosis could improve individualized therapies and predictions of outcomes for patients. In this study, we find that the uncharacterized, membrane-bound metallopeptidase CG14516 in Drosophila melanogaster, which we rename as SUPpressor of ER stress-induced DEATH (superdeath), plays a role in modifying ER stress-induced apoptosis. We demonstrate that loss of superdeath reduces apoptosis and degeneration in the Rh1G69D model of ER stress through the JNK signaling cascade. This effect on apoptosis occurs without altering the activation of the unfolded protein response (IRE1 and PERK), suggesting that the beneficial pro-survival effects of this response are intact. Furthermore, we show that superdeath functions epistatically upstream of CDK5, a known JNK-activated pro-apoptotic factor in this model of ER stress. We demonstrate that superdeath is not only a modifier of this particular model, but functions as a general modifier of ER stress-induced apoptosis across different tissues and ER stresses. Finally, we present evidence of Superdeath localization to the endoplasmic reticulum membrane. While similar in sequence to a number of human metallopeptidases found in the plasma membrane and ER membrane, its localization suggests that superdeath is orthologous to ERAP1/2 in humans. Together, this study provides evidence that superdeath is a link between stress in the ER and activation of cytosolic apoptotic pathways.SIGNIFICANCE STATEMENTGenetic diseases display a great deal of variability in presentation, progression, and overall outcomes. Much of this variability is caused by differences in genetic background among patients. One process that commonly modifies degenerative disease is the endoplasmic reticulum (ER) stress response. Understanding the genetic sources of variation in the ER stress response could improve individual diagnosis and treatment decisions. In this study, we characterized one such modifier in Drosophila melanogaster, the membrane-bound metallopeptidase CG14516 (superdeath). Loss of this enzyme suppresses a model of ER stress-induced degeneration by reducing cell death without altering the beneficial activation of the unfolded protein response. Our findings make superdeath and its orthologues attractive therapeutic targets in degenerative disease.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3