Nanopore sequencing for the detection and the identification of Xylella fastidiosa subspecies and sequence types from naturally infected plant material

Author:

Faino LuigiORCID,Scala Valeria,Albanese Alessio,Modesti Vanessa,Grottoli Alessandro,Pucci Nicoletta,L’Aurora Alessia,Reverberi Massimo,Loreti Stefania

Abstract

SummaryXylella fastidiosa (Xf) is a polyphagous gram-negative bacterial plant pathogen that can infect more than 300 plant species. It is endemic in America while, in 2013, Xf subsp. pauca was for the first time reported in Europe on olive tree in the Southern Italy. The availability of fast and reliable diagnostic tools is indispensable for managing current and future outbreaks of Xf.In this work, we used the Oxford Nanopore Technologies (ONT) device MinION platform for detecting and identifying Xf at species, subspecies and Sequence Type (ST) level straight from infected plant material. The study showed the possibility to detect Xf by direct DNA sequencing and identify the subspecies in highly infected samples. In order to improve sensitivity, Nanopore amplicon sequencing was assessed. Using primers within the set of the seven MLST officially adopted for identifying Xf at type strain level, we developed a workflow consisting in a multiple PCR and an ad hoc pipeline to generate MLST consensus after Nanopore-sequencing of the amplicons. The here-developed combined approach achieved a sensitivity higher than real-time PCR allowing within few hours, the detection and identification of Xf at ST level in infected plant material, also at low level of contamination.Originality Significance StatementIn this work we developed a methodology that allows the detection and identification of Xylella fastidiosa in plant using the Nanopore technology portable device MinION. The approach that we develop resulted more sensitive than methods currently used for detecting X. fastidiosa, like real-time PCR. This approach can be extensively used for X. fastidiosa detection and it may pave the road for the detection of other tedious vascular pathogens.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3