New Cell Fate Potentials and Switching Kinetics Uncovered in a Classic Bistable Genetic Switch

Author:

Fang Xiaona,Liu Qiong,Bohrer Christopher,Hensel Zach,Han Wei,Wang Jin,Xiao Jie

Abstract

AbstractBistable switches are common gene regulatory motifs directing two mutually exclusive gene expression states, and consequently distinct cell fates. Theoretical studies suggest that the simple circuitry of bistable switches is sufficient to encode more than two cell fates due to the non-equilibrium, heterogeneous cellular environment, allowing a high degree of adaptation and differentiation. However, new cell fates arising from a classic bistable switch without rewiring the circuitry have not been experimentally observed. By developing a new, dual single-molecule gene-expression reporting system in liveE. colicells, we investigated the expression dynamics of two mutually repressing transcription factors, CI and Cro, in the classic genetic switch of bacteriophage λ. We found that in addition to the two expected high-Cro and high-CI production states, there existed two new ones, in which neither CI nor Cro was produced, or both CI and Cro were produced. We constructed the corresponding potential landscape and mapped the transition kinetics between the four production states, providing insight into possible state-switching rates and paths. These findings uncover new cell fate potentials beyond the classical picture of λ switch, and open a new window to explore the genetic and environmental origins of the cell fate decision-making process in gene regulatory networks.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3