Author:
Johnson Erik C.,Wilt Miller,Rodriguez Luis M.,Norman-Tenazas Raphael,Rivera Corban,Drenkow Nathan,Kleissas Dean,LaGrow Theodore J.,Cowley Hannah,Downs Joseph,Matelsky Jordan,Hughes Marisa,Reilly Elizabeth,Wester Brock,Dyer Eva,Kording Konrad,Gray-Roncal William
Abstract
ABSTRACTEmerging neuroimaging datasets (collected through modalities such as Electron Microscopy, Calcium Imaging, or X-ray Microtomography) describe the location and properties of neurons and their connections at unprecedented scale, promising new ways of understanding the brain. These modern imaging techniques used to interrogate the brain can quickly accumulate gigabytes to petabytes of structural brain imaging data. Unfortunately, many neuroscience laboratories lack the computational expertise or resources to work with datasets of this size: computer vision tools are often not portable or scalable, and there is considerable difficulty in reproducing results or extending methods. We developed an ecosystem of neuroimaging data analysis pipelines that utilize open source algorithms to create standardized modules and end-to-end optimized approaches. As exemplars we apply our tools to estimate synapse-level connectomes from electron microscopy data and cell distributions from X-ray microtomography data. To facilitate scientific discovery, we propose a generalized processing framework, that connects and extends existing open-source projects to provide large-scale data storage, reproducible algorithms, and workflow execution engines. Our accessible methods and pipelines demonstrate that approaches across multiple neuroimaging experiments can be standardized and applied to diverse datasets. The techniques developed are demonstrated on neuroimaging datasets, but may be applied to similar problems in other domains.
Publisher
Cold Spring Harbor Laboratory
Reference52 articles.
1. The big data challenges of connectomics
2. Array tomography: High-resolution three-dimensional immunofluorescence;Cold Spring Harbor Protocols,2010
3. CLARITY for mapping the nervous system;Nature methods,2013
4. Allen Institute for Brain Science. Allen Brain Atlas, Retrieved June 2018. http://brain-map.org/api/index.html.
5. Quantifying mesoscale neuroanatomy using x-ray microtomography;eNeuro,2017
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献