Toward A Reproducible, Scalable Framework for Processing Large Neuroimaging Datasets

Author:

Johnson Erik C.,Wilt Miller,Rodriguez Luis M.,Norman-Tenazas Raphael,Rivera Corban,Drenkow Nathan,Kleissas Dean,LaGrow Theodore J.,Cowley Hannah,Downs Joseph,Matelsky Jordan,Hughes Marisa,Reilly Elizabeth,Wester Brock,Dyer Eva,Kording Konrad,Gray-Roncal William

Abstract

ABSTRACTEmerging neuroimaging datasets (collected through modalities such as Electron Microscopy, Calcium Imaging, or X-ray Microtomography) describe the location and properties of neurons and their connections at unprecedented scale, promising new ways of understanding the brain. These modern imaging techniques used to interrogate the brain can quickly accumulate gigabytes to petabytes of structural brain imaging data. Unfortunately, many neuroscience laboratories lack the computational expertise or resources to work with datasets of this size: computer vision tools are often not portable or scalable, and there is considerable difficulty in reproducing results or extending methods. We developed an ecosystem of neuroimaging data analysis pipelines that utilize open source algorithms to create standardized modules and end-to-end optimized approaches. As exemplars we apply our tools to estimate synapse-level connectomes from electron microscopy data and cell distributions from X-ray microtomography data. To facilitate scientific discovery, we propose a generalized processing framework, that connects and extends existing open-source projects to provide large-scale data storage, reproducible algorithms, and workflow execution engines. Our accessible methods and pipelines demonstrate that approaches across multiple neuroimaging experiments can be standardized and applied to diverse datasets. The techniques developed are demonstrated on neuroimaging datasets, but may be applied to similar problems in other domains.

Publisher

Cold Spring Harbor Laboratory

Reference52 articles.

1. The big data challenges of connectomics

2. Array tomography: High-resolution three-dimensional immunofluorescence;Cold Spring Harbor Protocols,2010

3. CLARITY for mapping the nervous system;Nature methods,2013

4. Allen Institute for Brain Science. Allen Brain Atlas, Retrieved June 2018. http://brain-map.org/api/index.html.

5. Quantifying mesoscale neuroanatomy using x-ray microtomography;eNeuro,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3