Immunocapture of dsRNA-bound proteins provides insight into tobacco rattle virus replication complexes and reveals Arabidopsis DRB2 to be a wide-spectrum antiviral effector

Author:

Incarbone MarcoORCID,Clavel Marion,Monsion BaptisteORCID,Kuhn LaurianeORCID,Scheer Helene,Poignavent VianneyORCID,Dunoyer Patrice,Genschik Pascal,Ritzenthaler ChristopheORCID

Abstract

ABSTRACTPlant RNA viruses form highly organized membrane-bound virus replication complexes (VRCs) to replicate their genome and multiply. This process requires both virus- and host-encoded proteins and leads to the production of double-stranded RNA (dsRNA) intermediates of replication that trigger potent antiviral defenses in all eukaryotes. In this work, we describe the use of A. thaliana constitutively expressing GFP-tagged dsRNA-binding protein (B2:GFP) to pull down viral replicating RNA and associated proteins in planta upon infection with tobacco rattle virus (TRV). Mass spectrometry analysis of the dsRNA-B2:GFP-bound proteins from TRV-infected plants revealed the presence of (i) viral proteins such as the replicase, which attested to the successful isolation of VRCs, and (ii) a number of host proteins, some of which have previously been involved in virus infection. Among a set of nine selected such host candidate proteins, eight showed dramatic re-localization upon infection, and seven of these co-localized with B2-labeled TRV replication complexes, providing ample validation for the immunoprecipitation results. Infection of A. thaliana T-DNA mutant lines for eight of these factors revealed that genetic knock-out of the Double-stranded RNA-Binding protein 2 (DRB2) leads to increased TRV accumulation. In addition, over-expression of this protein caused a dramatic decrease in the accumulation of four unrelated plant RNA viruses, indicating that DRB2 has a potent and wide-ranging antiviral activity. We therefore propose B2:GFP-mediated pull down of dsRNA to be a novel and robust method to explore the proteome of VRCs in planta, allowing the discovery of key players in the viral life cycle.AUTHOR SUMMARYViruses are an important class of pathogens that represent a major problem for human, animal and plant health. They hijack the molecular machinery of host cells to complete their replication cycle, a process frequently associated with the production of double-stranded RNA (dsRNA) that is regarded as a universal hallmark of infection by RNA viruses. Here we exploited the capacity of a GFP-tagged dsRNA-binding protein stably expressed in transgenic Arabidopsis to pull down dsRNA and associated proteins upon virus infection. In this manner we specifically captured short and long dsRNA from tobacco rattle virus (TRV) infected plants, and successfully isolated viral proteins such as the replicase, which attested to the successful isolation of virus replication complexes (VRCs). More excitingly, a number of host proteins, some of which have previously been involved in virus infection, were also captured. Remarkably, among a set of nine host candidates that were analyzed, eight showed dramatic re-localization to viral factories upon infection, and seven of these co-localized dsRNA-labeled VRCs. Genetic knock-out and over-expression experiments revealed that one of these proteins, A. thaliana DRB2, has a remarkable antiviral effect on four plant RNA viruses belonging to different families, providing ample validation of the potential of this experimental approach in the discovery of novel defense pathways and potential biotech tools to combat virus infections in the field. Being compatible with any plant virus as long as it infects Arabidopsis, we propose our dsRNA-centered strategy to be a novel and robust method to explore the proteome of VRCs in planta.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3