Ablation of the CDK inhibitor p57Kip2 results in increased apoptosis and delayed differentiation during mouse development.

Author:

Yan Y,Frisén J,Lee M H,Massagué J,Barbacid M

Abstract

p57(Kip2) is a paternally imprinted gene that encodes a potent inhibitor of several cyclin/Cdk complexes. p57(Kip2) is primarily expressed in terminally differentiated cells, associates with G1 Cdks, and can cause cell cycle arrest in G1 phase. To investigate the role of p57(Kip2) in vivo, we have ablated the p57(Kip2) gene by homologous recombination in ES cells and generated mice devoid of p57(Kip2) expression. Most p57(Kip2) null mice die after birth and display severe developmental defects with varying degrees of penetrance. As expected, heterozygous mice that inherit a maternal, but not a paternal, targeted allele exhibit similar deficiencies and neonatal death. Developmental defects of p57(Kip2) mutant mice include cleft palate and gastrointestinal abnormalities ranging from an inflated GI tract to loss of the jejunum and ileum. These tissues display a significant increase of apoptotic cells in the absence of p57(Kip2). Most p57(Kip2) mutant mice have short limbs, a defect attributable to abnormal endochondral ossification caused by delayed cell cycle exit during chondrocyte differentiation. A similar defect has been observed in mice lacking p107 and p130, thus suggesting that p57(Kip2) might be an upstream regulator of these Rb-related proteins. The p57(Kip2) locus has been implicated in the Beckwith-Wiedemann syndrome and in the development of sporadic Wilms' tumors and lung carcinomas. To date, we have not observed neoplastic development even in those p57(Kip2) mutant mice that have survived for >5 months of age. These findings indicate that p57(Kip2) has an important role during mouse development that cannot be compensated by other Cdk inhibitors.

Publisher

Cold Spring Harbor Laboratory

Subject

Developmental Biology,Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3