Insulin-stimulated glucose uptake partly relies on p21-activated kinase (PAK)-2, but not PAK1, in mouse skeletal muscle

Author:

Møller Lisbeth L. V.ORCID,Jaurji Merna,Kjøbsted Rasmus,Joseph Giselle A.,Madsen Agnete B.,Knudsen Jonas R.,Lundsgaard AnnemarieORCID,Andersen Nicoline R.ORCID,Schjerling PeterORCID,Jensen Thomas E.ORCID,Krauss Robert S.ORCID,Richter Erik A.ORCID,Sylow LykkeORCID

Abstract

AbstractObjectiveSkeletal muscle glucose uptake is essential for maintaining whole-body glucose homeostasis and accounts for the majority of glucose disposal in response to insulin. The group I p21-activated kinase (PAK) isoforms PAK1 and PAK2 are activated in response to insulin in skeletal muscle. Interestingly, PAK1/2 signalling is impaired in insulin-resistant mouse and human skeletal muscle and PAK1 has been suggested to be required for insulin-stimulated GLUT4 translocation. However, the relative contribution of PAK1 and PAK2 to insulin-stimulated glucose uptake in mature skeletal muscle is unresolved. The aim of the present investigation was to determine the requirement for PAK1 and PAK2 in whole-body glucose homeostasis and insulin-stimulated glucose uptake in skeletal muscle.MethodsGlucose uptake was measured in isolated skeletal muscle incubated with a pharmacological inhibitor (IPA-3) of group I PAKs and in muscle from whole-body PAK1 knockout (KO), muscle-specific PAK2 (m)KO and double whole-body PAK1 and muscle-specific PAK2 knockout mice.ResultsThe whole-body respiratory exchange ratio was largely unaffected by lack of PAK1 and/or PAK2. Whole-body glucose tolerance was mildly impaired in PAK2 mKO, but not PAK1 KO mice. IPA-3 partially reduced (−20%) insulin-stimulated glucose uptake in mouse soleus muscle. In contrast to a previous study of GLUT4 translocation in PAK1 KO mice, PAK1 KO muscles displayed normal insulin-stimulated glucose uptake in vivo and in isolated muscle. On the contrary, glucose uptake was slightly reduced in response to insulin in glycolytic extensor digitorum longus muscle lacking PAK2, alone (−18%) or in combination with PAK1 KO (−12%).ConclusionsInsulin-stimulated glucose uptake partly relies on PAK2, but not PAK1, in mouse skeletal muscle. Thus, the present study challenges that group I PAKs, and especially PAK1, are major regulators of whole-body glucose homeostasis and insulin-stimulated glucose uptake in skeletal muscle.

Publisher

Cold Spring Harbor Laboratory

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3