Putative pore-forming subunits of the mechano-electrical transduction channel, Tmc1/2b, require Tmie to localize to the site of mechanotransduction in zebrafish sensory hair cells

Author:

Pacentine Itallia V.ORCID,Nicolson TeresaORCID

Abstract

AbstractMutations in transmembrane inner ear (TMIE) cause deafness in humans; previous studies suggest involvement in the mechano-electrical transduction (MET) complex in sensory hair cells, but TMIE’s precise role is unclear. In tmie zebrafish mutants, we observed that GFP-tagged Tmc1 and Tmc2b, which are putative subunits of the MET channel, fail to target to the hair bundle. In contrast, overexpression of Tmie strongly enhances the targeting of Tmc2b-GFP to stereocilia. To identify the motifs of Tmie underlying the regulation of the Tmcs, we systematically deleted or replaced peptide segments. We then assessed localization and functional rescue of each mutated/chimeric form of Tmie in tmie mutants. We determined that the first putative helix was dispensable and identified a novel critical region of Tmie, the extracellular region and transmembrane domain, which mediates both mechanosensitivity and Tmc2b-GFP expression in bundles. Collectively, our results suggest that Tmie’s role in sensory hair cells is to target and stabilize Tmc subunits to the site of MET.Author summaryHair cells mediate hearing and balance through the activity of a pore-forming channel in the cell membrane. The transmembrane inner ear (TMIE) protein is an essential component of the protein complex that gates this so-called mechanotransduction channel. While it is known that loss of TMIE results in deafness, the function of TMIE within the complex is unclear. Using zebrafish as a deafness model, Pacentine and Nicolson demonstrate that Tmie is required for the localization of other essential complex members, the transmembrane channel-like (Tmc) proteins, Tmc1/2b. They then evaluate twelve unique versions of Tmie, each containing mutations to different domains of Tmie. This analysis reveals that some mutations in Tmie cause dysfunctional gating of the channel as demonstrated through reduced hair cell activity, and that these same dysfunctional versions also display reduced Tmc expression at the normal site of the channel. These findings link hair cell activity with the levels of Tmc in the bundle, reinforcing the currently-debated notion that the Tmcs are the pore-forming subunits of the mechanotransduction channel. The authors conclude that Tmie, through distinct regions, is involved in both trafficking and stabilizing the Tmcs at the site of mechanotransduction.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3