Author:
West Jeffrey,Newton Paul K.
Abstract
AbstractA tumor is made up of a heterogeneous collection of cell types all competing on a fitness landscape mediated by micro-environmental conditions that dictate their interactions. Despite the fact that much is known about cell signaling and cellular cooperation, the specifics of how the cell-to-cell coupling and the range over which this coupling acts affect the macroscopic tumor growth laws that govern total volume, mass, and carrying capacity remain poorly understood. We develop a statistical mechanics approach that focuses on the total number of possible states each cell can occupy, and show how different assumptions on correlations of these states gives rise to the many different macroscopic tumor growth laws used in the literature. Although it is widely understood that molecular and cellular heterogeneity within a tumor is a driver of growth, here we emphasize that focusing on the functional coupling of these states at the cellular level is what determines macroscopic growth characteristics.Significance statementA mathematical model relating tumor heterogeneity at the cellular level to tumor growth at the macroscopic level is described based on a statistical mechanics framework. The model takes into account the number of accessible states available to each cell as well as their long-range coupling (population cooperation) to other cells. We show that the degree to which cell populations cooperate determine the number of independent cell states, which in turn dictates the macroscopic (volumetric) growth law. It follows that targeting cell-to-cell interactions could be a way of mitigating and controlling tumor growth.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献