Learning cognitive maps as structured graphs for vicarious evaluation

Author:

Rikhye Rajeev V.ORCID,Gothoskar Nishad,Guntupalli J. SwaroopORCID,Dedieu Antoine,Lázaro-Gredilla MiguelORCID,George DileepORCID

Abstract

AbstractCognitive maps are mental representations of spatial and conceptual relationships in an environment. These maps are critical for flexible behavior as they permit us to navigate vicariously, but their underlying representation learning mechanisms are still unknown. To form these abstract maps, hippocampus has to learn to separate or merge aliased observations appropriately in different contexts in a manner that enables generalization, efficient planning, and handling of uncertainty. Here we introduce a specific higher-order graph structure – clone-structured cognitive graph (CSCG) – which forms different clones of an observation for different contexts as a representation that addresses these problems. CSCGs can be learned efficiently using a novel probabilistic sequence model that is inherently robust to uncertainty. We show that CSCGs can explain a variety cognitive map phenomena such as discovering spatial relations from an aliased sensory stream, transitive inference between disjoint episodes of experiences, formation of transferable structural knowledge, and shortcut-finding in novel environments. By learning different clones for different contexts, CSCGs explain the emergence of splitter cells and route-specific encoding of place cells observed in maze navigation, and event-specific graded representations observed in lap-running experiments. Moreover, learning and inference dynamics of CSCGs offer a coherent explanation for a variety of place cell remapping phenomena. By lifting the aliased observations into a hidden space, CSCGs reveal latent modularity that is then used for hierarchical abstraction and planning. Altogether, learning and inference using a CSCG provides a simple unifying framework for understanding hippocampal function, and could be a pathway for forming relational abstractions in artificial intelligence.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3