Mechanistic Studies on Oxygen-Insertion into Osmium(III)–Carbon Bond via High-Valent Oxido-Osmium(V) Complex

Author:

Sugimoto Hideki1,Aoki Kurumi1,Itoh Shinobu1

Affiliation:

1. Division of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 , Japan

Abstract

Abstract An osmium(III)-metalacycle complex consisting of 2-phenylpyridine is converted to the 2-phenoxidopyridine-osmium(III) complex upon treatment with a tertiary amine N-oxide, where a high-valent oxido-osmium(V) complex is proposed as a key reactive intermediate (H. Sugimoto et al. Organometallics, 2021, 40, 102–106). To gain insight into the reaction mechanism, substituent effects of 2-phenylpyridine moiety on the oxygen atom insertion reaction are examined using a series of 2-(4-X-phenyl)pyridines. All the cyclometalated complexes react with the tertiary amine N-oxide to produce the phenoxido-osmium(III) complexes. Kinetic analyses are conducted on the adduct formation process and the oxygen insertion reaction. In the former process, the binding constant of the amine N-oxide to the osmium(III) center is not influenced by electron withdrawing nature of the substituent X, but decrease of the reaction rate is observed in the latter process as electron withdrawing nature of X increases. Furthermore, the electronic effects of the amine N-oxides are examined using p-substituted N,N-dimethylaniline N-oxide (p-Y-C6H4N(O)(Me)2) to find that reaction rates increase as the electron withdrawing nature of Y increases. These results are consistent with the proposed mechanism in which the C–O bond formation involves conversion of the osmium(III)-N-oxide adduct to its oxido-osmium(V) species as the active oxidant.

Publisher

Oxford University Press (OUP)

Subject

General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3