Development of Hyperpolarized NMR Molecular Probes for Biological Applications

Author:

Sando Shinsuke12

Affiliation:

1. Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 , Japan

2. Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 , Japan

Abstract

Abstract Our bodies are composed of molecules. The dynamic activity of molecules is the essence of living phenomena. Toward the analysis of this, the establishment of in vivo molecular imaging techniques has been sought. Hyperpolarized nuclear magnetic resonance (NMR) is a promising technique that enables in vivo molecular imaging using highly sensitive hyperpolarized NMR molecular probes and is expected to be a next-generation molecular imaging technology. However, a major challenge lies in the rapid relaxation of the hyperpolarized nuclear spin state of the molecule, i.e., a short lifetime of high sensitivity. We have made our efforts to address this critical issue. This award account mainly describes our research to develop hyperpolarized molecular probes with long hyperpolarization lifetime. Based on the understanding of the relaxation mechanism of hyperpolarized spin states, we successfully developed various hyperpolarized 13C molecular probes, some of which were applied for in vivo studies. In addition, we demonstrated the development of hyperpolarized 15N molecular probes with remarkably long hyperpolarization lifetimes. These results pave the way for the rational design of hyperpolarized molecular probes, which has been difficult to achieve so far.

Publisher

Oxford University Press (OUP)

Subject

General Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Quo Vadis Hyperpolarized 13C MRI?;Zeitschrift für Medizinische Physik;2023-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3