Highly Efficient Perovskite Solar Cells with Light Management of Surface Antireflection

Author:

Liang Ying12,Jiao Chuanjia1,Zhou Peng3,Li Wangnan12,Zang Yue45,Liu Yiming6,Yang Gaoyuan45,Liu Liu7,Cheng Jiahao1,Liang Guijie12,Wang Jingyang12,Zhong Zhicheng12,Yan Wensheng45

Affiliation:

1. Hubei Key Laboratory of Low Dimensional Optoelectronic Materials and Devices, Hubei University of Arts and Science, Xiangyang 441053, P. R. China

2. Hubei Longzhong laboratory, Xiangyang 441000, P. R. China

3. School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, P. R. China

4. Institute of Carbon Neutrality and New Energy, Hangzhou Dianzi University, Hangzhou 310018, P. R. China

5. School of Electronics and Information, Hangzhou Dianzi University, Hangzhou 310018, P. R. China

6. College of Electrical Engineering & New Energy, Hubei Provincial Collaborative Innovation Center for New Energy Microgrid, China Three Gorges University, 8 University Avenue, Yichang, 443002, P. R. China

7. Xiangyang Sunvalor Aerospace Films Co. Ltd, Xiangyang 441057, P. R. China

Abstract

Abstract Perovskite solar cells (PSCs) captivate tremendous interest thanks to high-efficiency and low-cost. Nevertheless, the planar PSCs are negatively affected by serious reflection loss usually because of the refractive index mismatch between the glass substrate and the air, which limits their light harvesting performance. Here, we report an investigation for highly efficient PSCs with light management by applying a structural antireflective film made of polydimethylsiloxane (PDMS) pyramidal texture. Machine learning is firstly used to predict planar (FAPbI3)0.95(MAPbBr2.2Cl0.8)0.05 PSC’ performance for an experimental guide. The experimental results show excellent agreement between the two. When the antireflective film is utilized in the present planar PSCs, an impressive light absorption enhancement is achieved, resulting in a significantly increased power conversion efficiency of up to 23.5%.

Publisher

Oxford University Press (OUP)

Subject

General Chemistry

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3